Puththalam Hocim Cement Open Pit Mine and Manufacturing Plant

Cement Production - Open pit lime mine

Location

Holcim Group  operates  a  cement  manufacturing  plant  in  the  Puttalam  District,  Sri  Lanka. Limestone  and  other  raw  materials  for  the  cement  operations  are  transported  by  rail  from  a quarry  which  is located in Aruwakkalu. The distance  between quarry  and plant  is  41 km.

History

The  limestone  at  Aruwakalu  which  is  exploited  for  the  Puttalam  cement works  has  excess silica  due  to  the  presence  of  marl  intermixed  with  the  limestone  Serious problems  were experienced  at  the  Puttalam   plant  due  to  the  impure  nature  of  this  limestone  and the Geological  Survey  Department  was  called  upon  to  carry  out  additional  drilling  investigations in order to locate pure limestone  in 1975 - 1976 
These  surveys  revealed  that  pure  Miocene  limestone  is  present  in  the south - western  part  of the  Aruwakalu  and  opened  a  new  quarry  in  this  area  .In  addition  to  these surveys  the Geological  Survey  Department  carried  out  drilling  investigations  in  the  Dutch  Bay adjacent  to this  area  and  proved  about  35  million  tons  of  Miocene  limestone  of  acceptable quality  on  the bed  of  the  Dutch  Bay  to  a  depth  of  about  50  meters. Environmental  problems have dissuaded the Cement Corporation  from  exploiting  these reserves.

Geological settling  and mineralization  of limestone  deposit

The limestone deposit was occurred in Miocene period.  Before millions years ago Sri Lanka  and India  was  together  and  then  it  was  started  to  divide. Then big lagoon  was  created  between  Sri Lanka  and  southern  part  of  India.  In  that  lagoon  there  were  large  amount  of  coral  reefs which contain  fossils.  Then  the  lagoon  dried  and  corals  were  also  dried.   It  is  believed  that Kala  Oya flowed  through  this  location.  Then  clay  layers  and  sand  layers  were  deposited  on this  died limestone.  Sand  layer  contains  pure  sil ica.  Then  red  earth  included  to  the  cavities which  present in  limestone.  It  is  believed  that  red  earth  is  an  Aeolian  deposit  which  has come with  wind  from South India.  Red earth has very  fine  particles.

Geology and mineralogy

The  limestone  deposit  was  occurred  in  Miocene  period.  Before  millions  years  ago  Sri  Lanka and India  was  together  and  then  it  was  started  to  divide.  Then  big  lagoon  was  created between  Sri Lanka  and  southern  part  of  India.  In  that  lagoon  there  were  large  amount  of coral  reefs  which contain  fossils.  Then  the  lagoon  dried  and  corals  were  also  dried.   It  is believed  that  Kala  Oya flowed  through  this  location.  Then  clay  layers  and  sand  layers  were deposited  on  this  died limestone.  Sand  layer  contains  pure  silica .  Then  red  earth  included  to the  cavities  which  present in  limestone.  It  is  believed  that  red  earth  is  an  Aeolian  deposit which  has  come  with  wind  from South India.  Red earth has very  fine  particles.  The deposit consists  with  6 layers.
  1. 1st layer – Red earth
  2. 2nd layer – Low grade limestone
  3. 3rd layer  –Clay layer
  4. 4th layer  – Low grade limestone
  5. 5th layer  – High  grade limestone
  6. 6th layer  – The base 
The  red  earth  layer  consist  with  Al2O3,  Fe2O3,  and  Ilmenite etc. The  red  earth  has mixed with 2nd limestone  layer  through  its  pockets.  Due  to  that  it  is  considered  as  low  grade limestone.  The  last layer  is  the  base.  It  consist  with  higher  grade  limestone.  But  the  problem is  the  moisture  content of that is high.  Also  it is difficult  to mine  for that level  due to increasing of water level.
Limestone  is  a  sedimentary  rock  composed  largely  of  the  minerals  calcite  and  aragonite, which are  different  crystal  forms  of  calcium  carbonate  (CaCO3).  Like  most  other  sedimentary rocks, limestone  is  composed  of  grains;  however,  most  gra ins  in  limestone  are  skeletal fragments  of marine  organisms  such  as  coral  or  foraminifera.  Other  carbonate  grains comprising  limestones are  ooids,  peloids,  intraclasts,  and  extraclasts.  These  organisms  secrete shells  made  of  aragonite or calcite,  and leave  these shells  behind  after the organisms  die.
Limestone  often  contains  variable  amounts  of  silica  in  the  form  of  chert  or  siliceous  skeletal fragment  and varying  amounts  of clay,  silt  and sand carried  in by rivers.
Some  limestone  do  not  consist  of  grains  at  all,  and  are  formed  completely  by  the  chemical precipitation  of  calcite  or  aragonite.  Secondary  calcite  may  be  deposited  by  supersaturated meteoric  waters.  This  produces  speleothems,  such  as  stalagmites  and  stalactites.  Another  form taken by calcite  is oolitic  limestone,  which  can be recognized  by its granular  appearance. 
The  primary  source  of  the  calcite  in  limestone  is  most  commonly  marine  organisms.  Some  of these  organisms  can  construct  mounds  of  rock  known  as  reefs,  building  upon  past generations. Bel ow  about  3,000  meters,  water  pressure  and  temperature  conditions  cause  the dissolution  of calcite  to  increase  nonlinearly,  so  limestone  typically  does  not  form  in  deeper waters. Limestone may  also  form  in  both  lacustrine  and  evaporite  depositional  environments. Calcite can  be  either dissolved  or  precipitated  by  groundwater,  depending  on  several  factors, including the  water temperature,  pH,  and  dissolved  ion  concentrations.  Calcite  exhibits  an  unusual characteristic called  retrograde  solubility,  in  which  it  becomes  less  soluble  in  water as  the temperature increases.
Because  of  impurities,  such  as  clay,  sand,  organic  remains,  iron  oxide  and  other  materials, many limestone  exhibit  different  colors,  especially  on  weathered  surfaces.  Limestone  may  be crystalline,  clastic,  granular,  or  massive,  depending  on  the  method  of  formation.  Crystals  of calcite,  quartz,  dolomite  or  barite  may  line  small  cavities  in  the  rock.  When  conditions  are right for  precipitation,  calcite  forms  mineral  coatings  that  cement  the  existing  rock  grains together,  or it  can  fill  fractures.  Travertine  is  a  banded,  compact  variety  of  limestone  formed along  streams, particularly  where  there  are  waterfalls,  and  around  hot  or  cold  springs. Calcium carbonate  is deposited  where  evaporation  of  the  water  leaves  a  solution  supersaturated  with the chemical constituents  of  calcite.  Tufa,  a  porous  or  cellular  variety  of  travertine,  is  found  near waterfalls. Coquina  is a poorly  consolidated  limestone  composed of pieces of coral or shells.

The process of the quarry

Check the samples of limestone 

The  Carbonate  content,  Chloride  content,  free  Silica  content  and  Clay  content  in  limestone samples  are tested at Aruwakkalu  quarry  lab. There are three methods to collect samples.
  • Test hole sampling
  • Drill   hole  sampling
  • Ripping  sampling

Test hole sampling

To  get  information  about  the  quality  of  undiscovered  material  of  the  quarry  a  test  hole campaign is  carried  out  once  a  year.  This  is  done  on  a  20m  grid  where  the  area  overburden has  been removed  and  in  the  direction  of  the  quarry  advancing.  GPS  coordinates  of  easting and  nothing are  taken  on  drill  holes  where  samples  are  collected.  These  samples  are  analyzed using  the  XRF (x - ray  fluorescence  analysis  of  elements)  at  the  Palavi  main  laboratory  and the   chemistry  of  it  is known. 

Drill hole sampling

Beds  are  prepared  after  blasting  the  reject  material  and  clay  layer  by  ripping  using  the  heavy duty  dozer  for  drilling.  The  drill  machine  is  having  a  dust  collector  which  dust  is  sucked with  air. This  equipment  is  helpful  to  gather  samples  from  the  drill  holes.  A  separate  worker works  with drilling  machine  to collect  dust samples.

Ripping sampling 

Carbonate  content,  Chloride  content  and  free  Silica  content  is  tested  in  ripping  samples.  But normally,  the  ripping  materials  are  from  base  so  it  has  high  Chloride  content  than  the  high- grade materials.  Therefore, most of ripping  materials  are taken as finish  grinding  materials. 

Over Burden removal

Over  Burden  is  upper  soil  layer  on  the  deposit.  It  content  ripple  marks  and  classified  layers. 1m from  the  surface  is  a  humus  layer.  Below  that  it’s  red soil.  This  soil  is  very  rich  in Titanium  Oxide  metals. Metals  such  as  Ilmenite  and  Rutile,  up  to  7%  of  the soil. Other  than that,  the  red  earth  is  made  of  magnetite, spinel,  zircon,  garnet,  monazite  and  hematite  (iron oxide).   The  thickness  of  the  over  burden  varies  from west  to  east.  It  changes  from  25m to 5m.  First select the area  which  is  to  be  removed  the  soil.  Study  the  fauna and  flora  of  the area  for  one  year.  Then  select  the overburden  dump area. Then  start removing. 375  A  dozer  is used  to  remove  the  overburden.  Main parts  of  this  dozer  are  ripping  unit,  blade  and  the track. This  D375A  dozer  mainly  does  ripping  operations  at  the quarry  site.  The  blade  is  used  for push  and  removes  for material.   Rate  of  Diesel  consumption  is  very  high  in this  machine. Total  weight  of  this  machine  is  85MT approximately.  Diesel  per hour is 90L. 

Selecting blasting bed

The  limestone  deposit  contains  low  grade,  high  grade  limestone  and  clay.  From  drill  hall samples the correct depth to certain  material  can be identified.  
  1. Low grade limestone
  2. High grade limestone
  3. Finish Grinding Limestone
Finish  grinding  lime  stone  materials  are  high  grade  limestone  which  is  rich  in  lime  content though  low  in  clay  content  than  that  of  high  grade  limestone.  The  tolerance  limit  of  chloride for finish  grinding  is not specific  and relatively  high  contents  are permissible.
By  a  test  hole  campaign  conducted  once  a  year  in  a particular  area,  the  lab  clarifies  the height  of  high  grade  one  and  low  grade  one.  By  the  samples from  the  bed  the  lab  decides whether  this  is  a  high  grade  one  and   low  grade  one. According to the requirement  quarry engineer  is informed  to blast the particular  bed. The requirement  can be
  • High  grade  – to optimize  or for clinker  manufacture
  • Low grade  – to optimize  or for clinker  manufacture
  • Finish  grinding  – rarely  to optimize  or to add as additives  to clinker

Drilling blasting bed

Drilling  is  done  by  a  drilling  machine.  It’s  atlas  copco  CM470.  Drilling  process  done  by hydraulics.  Has  both  rotating  and  hammering  capability.  Contains  an  auto  drill  bit  changer and  a drifter.  Can  use  to  drill  vertical,  horizontal  and  angle.  Here  we  drill  only  vertical  holes but  when necessary  angle  drills  also  being  drilled.  Compressed  air  is  used  to  take  material out of  the  hole. It  contains  a  dust  collector  to  collect  dust  comes  out  from  the  drill  hole.  That  is helpful  to  take samples  of  the  bed  to  find  out  the  chemistry  of  the  bed.  The  machine  is  used to  drill  10ft,'20ft, 30ft. Sometimes  40ft is also drilled.  It depends on the bench height.

Blasting

Dynamites  are  used  as  primary  explosives  and  ANFO  is  used  as  Secondary  explosives. Charged holes  are  connected  as  a  loop.  Then  all  the  loops  are  connected  in  parallel  to  a main line  to reduce  the  overall  resistance.  If  there  were  any  hole  which  has  not  blasted  previously also  fixed to  the  main  line  or  to  a  loop.  Check whether the detonator has blasted by using the   meter. If it shows  a  high  resistance  means  the  blast  has  gone  it  not  it  is  still  good.   Then  the main  line  is connected  to the generator. There  are  3  sirens  before  the  blast.  The detonator blasts first. Then  dynamite  blasts.  Because  of  that cracks  are  generated.  Then  ANFO  burns  and release  high pressure  gas.  That  goes  through  those  cracks  and  breaks  the material  to small parts.   

Transport the material from quarry to the mix bed

WA  600  loader  is  used  to  lord  the  material.  Bucket capacity of the loader is 6.1m³ approximately and normal  load  of  the  loader  is  10  MT  approximately.  Operating  weight  of  the  machine  is  45MT.  Engine horsepower  of  the machine is 327kW. Procedures are done according to the operation and maintenance manual of the loader. Diesel per hour is 50L. Dumpers  are  used for  hauling the material from quarry to the mix bed. Overall weight of one dumper is (with material) 60MT approximately .its dump body capacity is18m³. There are three main dumper trucks are operation  at  presently.   Normally  HD  325  dumpers  are  available.  In  further  expansion  of cement project it is planned to import  large capacity dumpers.

Mix heaping

Whatever  the  material  from  the  quarry  do  not  satisfy  the  requirement.  To  make  almost  all  up to the  requirement,  a  mixing  procedure  is  used.  That’s  called  mix  heaping.  To  build  the  mix heap which  gives  the  requirement,  have  to  haul  material  from  the  quarry.  Chemistry  of  the material  to be  hauled  is  entered  to  special  software  called  QSO  Expert,  short  term.  That’s special  software used  in  cement  industry.  When  we  enter  the  chemistry  of  two  different quality  material,  it  gives the  ration  which  those  material  to  be  optimized  to  get the requirement.  Optimizing  work  can  do  for maximum  3 different  quality  materials. Normally  they build  2  types  of  heaps.  One  is  high grade  and  the  other  one  is  low  grade.  For high grade the optimizing  ratio  is  about  30%  to  70%.  For  low grade  it’s  almost  50%- 50%.  Those  heaps  are situated in  two  ramps.  One  is  called  old  ramp  and  the  other one called  new ramp. 

Wet Season Plan

The  rain  season  is  between  Octobers  to  February.  During  this  period  the  quarry  operations are not  done  well  as  dry season. Therefore the end of the dry season, the materials should be stocked ck in  the  Palavi   plant  and  at  the  loading  ramp  in  the  quarry.  But  both  hauling  and dispatching  of materials  is  difficult  due  to  the  rain.  If  the  material  is  transporting  during  the rainy  season following  plan  is implemented.
  • Material  is dispatched  from  covered mixed  heaps.
  • Free fall  faces are built  closer to cover easily.
  • If  the  covered  material  is  insufficient,  arrangement  being  made  to  transport  as  it  is from the quarry pit.
  • Revised  moisture  targets are used in  this  season.
  • If necessary  loaded limestone  wagons  during  rai ns  shall  be covered with  proof cloth.

Quality controlling

The  quality  of  dispatch  materials  is  controlled  and  assured  in  the  quarry  lab.  The  Quality control and  assurance  is  done  from  the  quarry  to  the point of that customer use the cement. According to the  SLS  and  ISO  standards,  the  quality  control  is  done  by  step  wise  to  achieve their  quality targets.
The  quarry  lab  has  the  quality  targets  separately  for  low- grade  limestone,  high - grade limestone and  Finish  grinding  limestone.  In  the  quarry  lab,  the  quality  of  materials  is  getting by  doing  wet analysis.  The  Carbonate  content,  Chloride  content,  free  Silica  content  and  Clay content  for  the finish  grinding  limestone  are  analyzed  in  the  quarry  lab.  According  the  results of  these  tests,  the rough  idea of quality  of materials  is get after the materials  are dispatched.If  the high  Chloride  content  materials  are  dispatched,  it  is  affected  to  block  the  preheater  system and  interrupt  the  cement  production.  Therefore  the  Chloride  content  of  materials  has   targets. But after  the  bypass  system  was  installed  to  the preheater system, there can be prevented blocking the preheater  system  due  to  Chloride.  Hence  the  Chloride  content  of  material  is  not much  more considered  these  days.  But  specially,  free  Silica  content  of  materials  are  to  be attention  because free  Silica  content  is  affected  the  kiln  productivity.  If  free  Silica  content  is high,  the  kiln productivity  is  low  due  to  the  its  low  burn  ability  and  the  wall  coats  of  kiln are  damaged. Therefore  the quarry l ab works hard on keeping  the dispatch  materials  within  their quality  targets

Rehabilitation

Holcim  is  having  ISO  14001  certificate  on  environment.  So  “Optimum  restoration  of biodiversity  and  landscape  values  after  limestone  mining  of  the  quarry  site”  is  the  main target of rehabilitating  the mined  areas. 
To  achieve  that,  Holcim  has  joint  hands  with  IUCN  (the  International  Union  for  Conservation of Nature)  who  willingly  to  assists  Holcim  in  effective  biodiversity  conservation  in  the  quarry area by  adhering  to  IUCN’s  general  goal  of  biodiversity  conservation.  On  the  other  hand, Holcim  is also  to  conserve  biodiversity  and  to  enforce  their  policy  of  responsible  quarry rehabilitation. Rehabilitation  of the quarry commonly  consists  of three  main  steps. Those are
  1. Refill  the quarry  pit to a lower  than original  profile
  2. Landscape
  3. Reforest

Refilling 

Refilling  is  started  with  reject  material.  Then  put  red  soil.  On  top  of  it  the  humus  layer  is put.  If the  overburden  is  to  be  dumped  in  to  the  quarry  at a level below the original topography,  it  is  possible  to  refill  the  complete  area.  This scenario  will  result  in  lowest  waste haulage  costs  and  will  provide good  opportunities  for  rehabilitation  of  the  old  quarry  area. This  is the method  that Holcim  use to refill.

Reforesting 

Reforesting  in  Refilled  areas  was  replanted  almost  7000  with  natural flora  in  order  to  fully rehabilitate  the refill.  Before  2003  topsoil  was  not  replaced,  and  replanting consisted  of  one tree  species.  As  studies  showed,  these  areas were  later  poorly  vegetated  and  not  much biodiversity  seems  to have  achieved.  But  afterwards,  the  topsoil  has  been  placed, fertilized  and a  wide  variety  of  plants  species  are  being  planted to  achieve  balanced  bio  diversity.  Some planted  species  grow well,  and  the  topsoil  seed  bank  resulted  in  a  luxurious  growth  of pioneer species.

Transporting

Limestone  and  other  raw  materials  for  the  cement operations  are  transported  by  rail  from  a quarry  which  is located  in  Aruwakkalu.  The  distance  between  quarry  and plant  is  41  km. Vegans  are  used  to  load  the  material.  In one  time  40  vegans  are  carried  by  train  engine.  The rail way track belongs  to the holcim.

Description  of the plant

Cement  is  a  material  with  adhesive  and  cohesive  properties  and  that  binds  or  unites essentially like  glue.  Cement  binds  the  sand  and  coarse  aggregate  together  to  fill  voids  in between  sand  and coarse  aggregate  particle  and  form  a  compact  mass.  Hydraulic  Cement  sets and  hardens  by action  of water such as Portland  cement.
Chemical  composition  of Portland  cement:
  • Tricalcium  Silicate  (50%)
  • Dicalcium  Silicate  (25%)
  • Tricalcium  Aluminate  (10%)
  • Tetracalcium  Aluminoferrite  (10%)
  • Gypsum  (5%)

Cement manufacturing process in brief

Cement  is  manufactured  from  a  carefully  controlled  mixture  of  calcium,  silica,  alumina  and iron. Calcium  is generally  obtained  from  limestone.  Silica,  alumina  and iron  are generally obtained from  clay  or  shale  and  iron  ore. The  limestone  which  transported  through  the  train  is crushed  with  hammer  crusher  to  reduce  sizes  75  mm.  Then  materials  are  transferred  trough belt conveyor  to  milling  process.  Depending  on  the  mineral  content  of  the  limestone, additional  silica and/or  iron  ore  are  added  to  the  milling  process  to  get  the  chemistry  right. The  various components  are  milled  and  dried  in  a  roller  mill.   Heavy  rollers  are  held  ove r  a rotating   and  the coarse material  is milled  until  it is fine  enough. 
The  milled  blended  raw  material  is transported  to  the  top  of  the  kiln  preheater  tower.  The kiln  is fired  by  finely  ground  coal  and  is  designed  to  maxim ize  the heat  transfer  from  the ignited  coal  to  the  clinker.  In  the preheater,  the  raw  materials  are  heated  to  a  temperature  of about   800°C  and  carbon  dioxide  is  removed  from  the limestone.  Then  the  material  drops  into the  rotating  kiln  where its  temperatu re  is  raised  to  1450°C.  The  rotation  and  shape  of  kiln allow  the blend to flow down the kiln,  submitting  it to gradually  increasing  temperature.
At  this  stage  the  various  minerals  start  to  fuse  together  to  form predominantly  calcium silicate crystals  (cli nker).  This  semi molten  material  is  then  cooled  as  rapidly  as  possible  in  a  cooler and stored in  a clinker  silo  ready for final  milling. 
Cement  mills  are  rotating  tubes  filled  with  steel    balls. A roller press is  sometimes  used  to  the size  reduction  process  before  the  clinker  is fed  into  the  mill  to  produce  a  very  fine  grey powder.  Controlling  the cement  fineness  assists  in  determining  the  strength  growth  rate  of  the cement  in  mortar  and  concrete.  During  milling,  gypsum  is  added  to control  the  cement’s setting  time.  The  base  cement  is  stored  in homogenizing  silos  to  ensure  the  most  consistent product  possible. 
Then,  it  is  grounded  to  a  fine  powder  and  then the cement is stored in storage bins  or cement silos or  bagged. Cement  bags should  be stored on pallets  in  a dry place.

Lab operations

In  each  stage  of  production  lab  testing  of  every  materials  is  done  in factory  main  lab.  When hazed  materials  are  taken  as  secondary energy  resources  the  content  of  radioactive  elements are checked. Also  in  each  production  samples  are  checked  using  XRF.  After cement  is  produced the  strength  of  cement  block  is  checked  in  main lab.

Main control unit

All  the production  steps are controlled  by main  controlled  unit. The production  process is controlled  in computer  system.  All  the indicators  and controllers  present in main  controlling  uni t.  When there is an error it is indicated  in  computer  screen.

About  Cement

Cement  is  a  glue  that  holds  the  rocks  and  bricks.Also  a  bonding  agent  obtained  by  burning a mixture  of  limestone  and  clay  together  to  form  clinker,then  pulverizing  the  clinker  with gypsum.It  is  consist  with  Calcium  oxide  with  silica,  alumina  and  iron  oxide.Also  minor consist of   MgO,SO3, Na2O,K2O  and  chloride.  Joseph  Asdin,  an  English  mason  invented cement  in 1824.Cement  called  as  Portland  cement  because  it  produced  a concrete that resembled the colour of the natural  limestone  quarried  in Portland(England).
There are various  cement  in  the world.  They are,
Portland  cement Types
  • Ordinary  Portland  cement
  • Portland  white  cement
  • Portland  oil  well  cement
  • Portland  high  alumina  cement

Blended  cement

produced  by  intimately  and  uniformly  intergrinding  of  blending Portland  cement  and two or more types of fine  materials,such  as
  • Ground  granulated  blast  furnace  slag- it  is a by product in  steel industry
  • Fly ash - by product in thermal  power plants
  • Silica  fume- by  product in Ferrosilicon  Alloys
  • Calcined  clay- burnt  clay
  • Volcanic  ash- Volcanic  eruption
  • Limestone- naturally  available
Types
  • Portland  blast furnace  slag
  • Portland  fly  ash cement
  • Portland  masonry  cement
Clinker minerals
  • Alite        - C3S
  • Belite- Beta      -  C2 S – β
  • Belite- Gamma      - C2S- γ
  • Aluminate- Cubic    -  C3 A – C
  • Aluminate  Orthorhombic  - C3A- O
  • Ferrite- Alpha      - C4AF- α
  • Ferrite- Beta      -  C4 AF – β
  • Free Lime      - F.CaO
  • Arcanite      - CaSO4
  • Periclase      - MgO
  • Quartz        - SiO2